Supporting Information for

Role of Seasonal Transitions and the Westerlies in the Interannual Variability of the East Asian Summer Monsoon Precipitation

J. C. H. Chiang¹, L. M. Swenson¹*, W. Kong¹

¹Department of Geography and Berkeley Atmospheric Sciences Center, University of California, Berkeley CA 94720-4740

*Currently at Department of Land, Air, and Water Resources, University of California, Davis

Contents of this file

Figure S1

Introduction

Supplementary figure S1 is included in this document.
Figure S1. Comparison of upper tropospheric fields (averaged over July 1-22) between High and Low composite years. (a) Composite difference (High minus Low) of 300mb zonal wind. The contour interval is 2m/s, dashed contours are negative, and shaded regions indicate where the difference is significant at the 5% level (using a 2-sample t-test). (b) Composite difference (High minus Low) for the 150-500mb geopotential height thickness. The contour interval is 10m, dashed contours are negative, and shaded regions indicate where the difference is significant at the 5% level. (c) 300mb zonal wind zonally averaged over 60-125E, for ‘High’ years (red line) and ‘Low’ years (blue line). (d) the 150-500mb geopotential height thickness zonally averaged over 60-125E, for ‘High’ years (red line) and ‘Low’ years (blue line). The dashed line in (c) and (d) mark the northern base of the Tibetan Plateau, around 40N. The figures show that for ‘High’ years as compared to ‘Low’ years, there is a northward displacement of the westerlies that is zonally coherent across Asia and Western North Pacific.